Search results for "spectroscopy and geometrical structure of clusters"
showing 2 items of 2 documents
Liquid-liquid phase coexistence in gold clusters. 2D or not 2D?
2006
The thermodynamics of gold cluster anions (${\mathrm{Au}}_{N}^{\ensuremath{-}}$, $N=11,\dots{},14$) is investigated using quantum molecular dynamics. Our simulations suggest that ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ may exhibit a novel, freestanding planar liquid phase which dynamically coexists with a normal three-dimensional liquid. Upon cooling with experimentally realizable cooling rates, the entropy-favored three-dimensional liquid clusters often supercool and solidify into the ``wrong'' dimensionality. This indicates that experimental validation of theoretically predicted ${\mathrm{Au}}_{N}^{\ensuremath{-}}$ ground states might be more complicated than hitherto expected.
Density-functional based tight-binding study of small gold clusters
2006
In this paper, we report the ability of self-consistent-charge density-functional based tight-binding method to describe small gold clusters. We concentrate our investigations mainly on anions, and find that the method describes their geometric and electronic structures fairly well, in comparison with density-functional calculations. In particular, the method correctly reproduces the planarity of ground-state structures up to cluster sizes in agreement with experiment and density-functional theory.